Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Xylazine (XYL), an FDA-approved veterinary tranquilizer, is being abused both as an opioid adulterant in a street-drug known as “Tranq-dope” and as a date rape drug. Given its now nearly ubiquitous use with fentanyl and fentanyl derivatives across the globe, XYL has become a primary target for researchers seeking to develop portable and cost-effective sensors for its detection. Electrochemical sensors based on the oxidation of XYL, while useful, have limitations due to certain interferents and inherent electrode fouling that render the approach less reliable, especially in certain sample matrices. In this work, modified electrode platforms incorporating layers of multi-walled carbon nanotubes for sensitivity along with semi-permeable polyurethane (PU) layers and host–guest chemistry using β-cyclodextrin for selectivity are deployed for XYL detection using complementary adsorptive cathodic stripping analysis. The modified electrode sensors are optimized to minimize high potentials and maintain fouling resistant capabilities and investigated to better understand the function of the PU layer. The use of adsorptive cathodic stripping differential pulse voltammetry indirectly indicates the presence and concentration of XYL within complex sample media (beverages and synthetic urine). When used in this manner, the modified electrodes exhibited an overall average sensitivity of ~35 (±9) nA/μM toward XYL with a limit of quantification of <10 ppm, while also offering adaptability for the analysis of XYL in different types of samples. By expanding the capability of these XYL sensors, this study represents another facet of tool development for use by medical professionals, first-responders, forensic investigators, and drug-users to limit exposure and help stem the dangerous and illegal use of XYL.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Amperometric electrochemical sensing schemes, which are easily fabricated and can directly relate measured current with analyte concentrations, remain a promising strategy for the development of the portable, in situ detection of commonly employed adulterants. Xylazine (XYL) is a non-narcotic compound designed for veterinary use as a sedative known as Rompun®. XYL is increasingly being abused as a recreational drug, as an opioid adulterant and, because of its chemical properties, has found unfortunate prominence as a date rape drug spiked into beverages. In this study, a systematic exploration and development of fouling-resistant, amperometric XYL sensors is presented. The sensing strategy features layer-by-layer (LBL) modification of glassy carbon electrodes (GCEs) with carbon nanotubes (CNTs) for sensitivity and the engagement of cyclodextrin host–guest chemistry in conjunction with polyurethane (PU) semi-permeable membranes for selectivity. The optimization of different materials and parameters during development created a greater fundamental understanding of the interfacial electrochemistry, allowing for a more informed subsequent design of effective sensors exhibiting XYL selectivity, effective sensitivity, rapid response times (<20 s), and low estimated limits of detection (~1 ppm). Most importantly, the demonstrated XYL sensors are versatile and robust, easily fabricated from common materials, and can effectively detect XYL at <10 ppm in both common alcoholic and non-alcoholic beverages, requiring only minimal volume (20 µL) of the spiked beverage for a standard addition analysis.more » « less
-
As the opioid crisis continues to wreak havoc on a global scale, it is increasingly critical to develop methodologies to detect the most dangerous drugs such as fentanyl and its derivatives, which have orders of magnitude higher potency than morphine. The scientific challenge for chemical detection of fentanyl and its derivatives is complicated by both the constantly increasing synthetic variations of the drug as well as the expanded use of adulterants. One tragically consequential example is the nocuous street drug known as “Tranq”, which combines fentanyl or a fentanyl derivative with the veterinary sedative Rompun®, chemically identified as xylazine (XYL). This pervasive street cocktail is exacerbating the already staggering number of fentanyl-related deaths as its acute toxicity poses a danger to medical first-responders and complicates their initial assessment and treatment options for overdose victims. Given the widespread use of XYL as an adulterant, an electrochemical XYL sensor capable of on-site operation by non-experts as a fast-screening tool is a notable goal. This work presents a voltammetry-based sensor featuring carbon electrodes modified with carboxylic-acid functionalized multi-walled carbon nanotubes layered with cyclodextrin and polyurethane membranes for sensitivity and selectivity enhancements. The sensor has critical and robust fouling resistance while providing sensitivity at 950 μA/mM∙cm2, a low limit of detection (~5 ppm), and the ability to detect XYL in the presence of fentanyl and/or other non-fentanyl stimulants like cocaine. The demonstrated sensor can be applied to promote public health with its ability to detect and indicate XYL in the presence of opioids, serving to protect drug-users, first responders, medical examiners, and on-site forensic investigators from exposure to these dangerous mixtures.more » « less
-
Abstract. Warm-water coral reefs are facing unprecedented human-driven threats to their continued existence as biodiverse functional ecosystems upon which hundreds of millions of people rely. These impacts may drive coral ecosystems past critical thresholds, beyond which the system reorganises, often abruptly and potentially irreversibly; this is what the Intergovernmental Panel on Climate Change (IPCC, 2022) define as a tipping point. Determining tipping point thresholds for coral reef ecosystems requires a robust assessment of multiple stressors and their interactive effects. In this perspective piece, we draw upon the recent global tipping point revision initiative (Lenton et al., 2023a) and a literature search to identify and summarise the diverse range of interacting stressors that need to be considered for determining tipping point thresholds for warm-water coral reef ecosystems. Considering observed and projected stressor impacts, we endorse the global tipping point revision's conclusion of a global mean surface temperature (relative to pre-industrial) tipping point threshold of 1.2 °C (range 1–1.5 °C) and the long-term impacts of atmospheric CO2 concentrations above 350 ppm, while acknowledging that comprehensive assessment of stressors, including ocean warming response dynamics, overshoot, and cascading impacts, have yet to be sufficiently realised. These tipping point thresholds have already been exceeded, and therefore these systems are in an overshoot state and are reliant on policy actions to bring stressor levels back within tipping point limits. A fuller assessment of interacting stressors is likely to further lower the tipping point thresholds in most cases. Uncertainties around tipping points for such crucially important ecosystems underline the imperative of robust assessment and, in the case of knowledge gaps, employing a precautionary principle favouring lower-range tipping point values.more » « less
An official website of the United States government
